If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2-10q=0
a = 2; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·2·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*2}=\frac{0}{4} =0 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*2}=\frac{20}{4} =5 $
| 1/2x+7=3/4x-10 | | 5•(3x/7-2)=3x | | 5•(3•x)/2=3x | | 20+.75x=1.75x | | 2x2-5x+2=0 | | x+0.11x=1.37 | | -1/5x-2/5=-2 | | 4x+10=-5x+18 | | -4x+10=-5x+19 | | 3(8x-9)=37 | | -10x+2/3=7/3-5x | | -7(x-6=-70 | | 1-4/7x=6/4 | | 8x2+8x=65918160 | | 6x2+6x=65918160 | | 6x2+6x=1940448 | | 8x2+8x=57120 | | 6x2+6x=1164240 | | 6x2+6x=1164241 | | 3x÷4+6=5x÷2-18 | | (y-0,3)/0,1=1 | | 6x2+6x=57120 | | 3x/4+6=5x/2-18 | | 2x2+7x-3=0 | | (x)/(9)+(2)/(3)=(4)/(9) | | T2+2t-8=0 | | 0=5y^2-26y+160 | | 0=5y^2-20y+160 | | (x-2)=7x+14 | | 3(1-4x)-(5x-4)=-20-3(2x-7) | | 3(6p-(21-5p))=4(7p-12) | | 3(6p-(21-5p))=28p-48 |